Yahoo Αναζήτηση Διαδυκτίου

Αποτελέσματα Αναζήτησης

  1. Integrals of Exponential and Logarithmic Functions. ∫ ln x dx = x ln x − x + C. + 1 x. + 1. x ∫ x ln xdx = ln x − + C. 2 + 1 ( n + 1 ) x dx = e x + C ∫.

  2. Integral formulas are listed along with the classification based on the types of functions involved. Also, get the downloadable PDF of integral formulas for different functions like trigonometric functions, rational functions, etc.

  3. www.integral-table.com › downloads › single-page-integral-tableTable of Integrals

    Table of IntegralsBasic Forms Z xndx = 1 n+ 1 xn+1 (1) Z 1 x dx= lnjxj (2) Z udv= uv Z vdu (3) Z 1 ax+ b dx= 1 a lnjax+ bj (4) Integrals of Rational Functions Z 1 (x+ a)2 dx= ln(1 x+ a (5) Z ... Integrals with Trigonometric Functions Z sinaxdx= 1 a cosax (63) Z sin2 axdx= x 2 sin2ax 4a (64) Z sinn axdx= 1 a cosax 2F 1 1 2; 1 n 2; 3 2;cos2 ...

  4. Integral of a constant \int f\left (a\right)dx=x\cdot f\left (a\right) Take the constant out \int a\cdot f\left (x\right)dx=a\cdot \int f\left (x\right)dx. Sum Rule \int f\left (x\right)\pm g\left (x\right)dx=\int f\left (x\right)dx\pm \int g\left (x\right)dx. Add a constant to the solution.

  5. www.integral-table.com › downloads › Basic-Integral-TableTable of Basic Integrals1

    Table of Basic Integrals1 (1) Z xn dx = 1 n+1 xn+1; n 6= 1 (2) Z 1 x dx = lnjxj (3) Z u dv = uv Z vdu (4) Z e xdx = e (5) Z ax dx = 1 lna ax (6) Z lnxdx = xlnx x (7) Z sinxdx = cosx (8) Z cosxdx = sinx (9) Z tanxdx = lnjsecxj (10) Z secxdx = lnjsecx+tanxj (11) Z sec2 xdx = tanx (12) Z secxtanxdx = secx (13) Z a a2 +x2 dx = tan 1 x a (14) Z a a2 ...

  6. www.integral-table.com › downloads › integral-tableTable of Basic Integrals

    Integral Table from http://integral-table.com. Table of Basic Integrals. Basic Forms. 1 xndx = xn+1; n 6= 1. + 1. 1 dx. = ln jxj. Z. udv = uv. Z. vdu. (4) Z 1 1 dx = ln jax + bj ax + b a. Integrals of Rational Functions. (5) Z 1 1 dx = (x + a)2 x + a. (6) Z (x + a)n+1. (x + a)ndx = ; n 6= 1. n + 1. (7) Z (x + a)n+1((n + 1)x a)

  7. Definite Integrals Rules: Definite Integral Boundaries: ∫ ( ) lim →. (. ) Odd Function: If ( ) = − (− ), then. = ( ) −. ( ) = lim → − ( ) −. ∫.

  1. Γίνεται επίσης αναζήτηση για