Αποτελέσματα Αναζήτησης
An irreversible process can be defined as a process in which the system and the surroundings do not return to their original condition once the process is initiated. Take an example of an automobile engine that has travelled a distance with the aid of fuel equal to an amount ‘x’.
A reversible process is a process in which the system and environment can be restored to exactly the same initial states that they were in before the process occurred, if we go backward along the path of the process. The necessary condition for a reversible process is therefore the quasi-static requirement.
An irreversible process increases the total entropy of the system and its surroundings. The second law of thermodynamics can be used to determine whether a hypothetical process is reversible or not. Intuitively, a process is reversible if there is no dissipation.
14 Ιουν 2021 · We distinguish between two kinds of irreversible processes. A process that cannot occur under a given set of conditions is said to be an impossible process. A process that can occur, but does not do so reversibly, is called a possible process or a spontaneous process.
Summary. A reversible process is one in which both the system and its environment can return to exactly the states they were in by following the reverse path. An irreversible process is one in which the system and its environment cannot return together to exactly the states that they were in.
17 Μαΐ 2023 · In contrast to reversible processes, irreversible processes are those that cannot be completely reversed, resulting in irreversible changes to the system and its environment. These processes involve a net loss of useful energy in the form of heat dissipation or entropy generation.
An irreversible process is a type of thermodynamic change that cannot be undone without leaving a permanent alteration in the system or its surroundings. This means that once the process has occurred, the system cannot return to its original state without additional changes or input.