Αποτελέσματα Αναζήτησης
The presence of uracil in DNA arises through several mechanisms. One primary route is the spontaneous deamination of cytosine, converting it into uracil. This chemical transformation can occur under physiological conditions, leading to the mispairing of bases during DNA replication.
16 Δεκ 2002 · Uracil in DNA results from deamination of cytosine, resulting in mutagenic U : G mispairs, and misincorporation of dUMP, which gives a less harmful U : A pair. At least four different human DNA...
3 Μαρ 2009 · Uracil in DNA may result from incorporation of dUMP during replication and from spontaneous or enzymatic deamination of cytosine, resulting in U:A pairs or U:G mismatches, respectively. Uracil generated by activation-induced cytosine deaminase (AID) in B cells is a normal intermediate in adaptive immunity.
28 Σεπ 2010 · Uracil (U) can be found in DNA as a mismatch paired either to adenine (A) or to guanine (G). Removal of U from DNA is performed by a class of enzymes known as uracil–DNA–glycosylases (UDG). Recent studies suggest that recognition of U–A and U–G mismatches by UDG takes place via an extra-helical mechanism.
16 Ιαν 2023 · Although thymine and uracil are similar in function and can form the same base pairs with adenine, the presence of uracil in DNA can affect DNA stability and modulate cell-specific functions. Without repair mechanisms to remove uracil from DNA, cytosine deamination can occur, resulting in gene drift that is not tolerable in organisms.
10 Αυγ 2020 · Uracil may arise in DNA as a result of spontaneous cytosine deamination and/or misincorporation of dUMP during DNA replication. In this paper we will review: (i) sources of the origin of uracil in DNA; (ii) some properties of the enzymes responsible for the excision of uracil and their role in the I ….
1 Δεκ 2010 · In this paper we will review: (i) sources of the origin of uracil in DNA; (ii) some properties of the enzymes responsible for the excision of uracil and their role in the Ig diversification process, which comprises somatic hypermutation and class switch recombination; and (iii) consequences of cytosine deamination in other than the Ig loci, in ...