Αποτελέσματα Αναζήτησης
Integrals of Exponential and Logarithmic Functions. ∫ ln x dx = x ln x − x + C. + 1 x. + 1. x ∫ x ln xdx = ln x − + C. 2 + 1 ( n + 1 ) x dx = e x + C ∫.
Table of Integrals∗ Basic Forms Z xndx = 1 n+ 1 xn+1 (1) Z 1 x dx= lnjxj (2) Z udv= uv Z vdu (3) Z 1 ax+ b dx= 1 a lnjax+ bj (4) Integrals of Rational Functions Z 1 (x+ a)2 dx= ln(1 x+ a (5) Z ... Integrals with Trigonometric Functions Z sinaxdx= 1 a cosax (63) Z sin2 axdx= x 2 sin2ax 4a (64) Z sinn axdx= 1 a cosax 2F 1 1 2; 1 n 2; 3 2;cos2 ...
Table of Basic Integrals1 (1) Z xn dx = 1 n+1 xn+1; n 6= 1 (2) Z 1 x dx = lnjxj (3) Z u dv = uv Z vdu (4) Z e xdx = e (5) Z ax dx = 1 lna ax (6) Z lnxdx = xlnx x (7) Z sinxdx = cosx (8) Z cosxdx = sinx (9) Z ... CSUN, Integrals, Table of Integrals, Math 280, Math 351, Differential Equations Created Date:
Integral of a constant \int f\left (a\right)dx=x\cdot f\left (a\right) Take the constant out \int a\cdot f\left (x\right)dx=a\cdot \int f\left (x\right)dx. Sum Rule \int f\left (x\right)\pm g\left (x\right)dx=\int f\left (x\right)dx\pm \int g\left (x\right)dx. Add a constant to the solution.
5.2 The Definite Integral; 5.3 The Fundamental Theorem of Calculus; 5.4 Integration Formulas and the Net Change Theorem; 5.5 Substitution; 5.6 Integrals Involving Exponential and Logarithmic Functions; 5.7 Integrals Resulting in Inverse Trigonometric Functions
Table of Basic Integrals. Basic Forms. 1 xndx = xn+1; n 6= 1. + 1. 1 dx. = ln jxj. Z. udv = uv. Z. vdu. (4) Z 1 1 dx = ln jax + bj ax + b a. Integrals of Rational Functions. (5) Z 1 1 dx = (x + a)2 x + a. (6) Z (x + a)n+1. (x + a)ndx = ; n 6= 1. n + 1. (7) Z (x + a)n+1((n + 1)x a) x(x + a)ndx = (n + 1)(n + 2) (8) 1 dx. + x2 = tan 1 x.
Here is a list of commonly used integration formulas. Applications of each formula can be found on the following pages. 1: $\int {{x^\gamma }dx = \frac{{{x^{\gamma + 1}}}}{r + 1} + C}$ 1a: $\int {kdx = kx + C} $ where $k$ is a constant. 2: $\int {kf(x) = k\int {f(x)dx} }$ where $k$ is a constant. 3: