Αποτελέσματα Αναζήτησης
Integration Formulas. 1. Common Integrals. Indefinite Integral. Method of substitution. ∫ f ( g ( x )) g ′ ( x ) dx = ∫ f ( u ) du. Integration by parts. ∫ f ( x ) g ′ ( x ) dx = f ( x ) g ( x ) − ∫ g ( x ) f ′ ( x ) dx. Integrals of Rational and Irrational Functions. + 1. ∫ x dx. n xn. = + C. + 1. ∫ dx = ln x + C. x. ∫. c dx = cx + C. x. 2.
Page 2 of 6. INTEGRATION FORMULAE STANDARD INTEGRALS 1. ∫, ( )- ( ) , ( )- [where, n ≠ 1- 2. ∫ ( ) ( ) * ( )+ 3. ∫ ( ) ∫ ( ) [where, v be the function of x]
A Review: The basic integration formulas summarise the forms of indefinite integrals for may of the functions we have studied so far, and the substitution method helps us use the table below to evaluate more complicated functions involving these basic ones.
Integration by parts: u dv = uv. −. v du + C. ax + b. Partial Fractions: to integrate a function like : (x + c)(x + d) ax + b A B A(x + d) + B(x + c) Write = + = , (x + c)(x + d) (x + c) (x + d) (x + c)(x + d) so ax + b = A(x + d) + B(x + c) = (A + B)x + (Ad + Bc), so a = A + B and b = Ad + Bc; solve for A and B .
Basic integration formulas. (x + c)(x + d) (x + c) (x + d) (x + c)(x + d) so ax + b = A(x + d) + B(x + c) = (A + B)x + (Ad + Bc), so a = A + B and b = Ad + Bc; solve for A and B . The approach for more general denomenator can be found in nearly any calculus textbook.
Integration Rules and Formulas Properties of the Integral: (1) Z b a f(x)dx = Z a b f(x)dx (2) Z a a f(x)dx = 0 (3) Z b a kf(x)dx = k Z b a f(x)dx (4) Z b a [f(x)+g(x)]dx =
Basic Integration Formulas. Power functions: xn+1. xn = + C, n 6= −1. + 1. 1. dx = ln |x| + C. x. 2. Trigonometric functions: Z. (3) sin xdx = − cos x + C. Z. (4) cos xdx = sin x + C. Z. (5) sec2xdx = tan x + C. Z. (6) csc2 xdx = − cot x + C. Z. (7) sec x tan xdx = sec x + C. Z. (8) csc x cot x = − csc x + C. 3. Exponential function: Z.