Αποτελέσματα Αναζήτησης
Integrals of Exponential and Logarithmic Functions. ∫ ln x dx = x ln x − x + C. + 1 x. + 1. x ∫ x ln xdx = ln x − + C. 2 + 1 ( n + 1 ) x dx = e x + C ∫.
INTEGRATION FORMULAE STANDARD INTEGRALS 1. ∫, ( )- ( ) , ( )- [where, n ≠ 1- 2. ∫ ( ) ( ) * ( )+ 3. ∫ ( ) ∫ ( ) [where, v be the function of x] 4. ∫ , ( ) ( )- ( ) 5. ∫ ( ) ( ) ( ) or, ∫ [where, v be the function of x] 6. ∫ ( ) √ ( ) √ ( ) [Particular case for I.] 7. ∫ . / , general case ∫ ( ) , ( )- . ( ) / 8. ∫ √ .
Integration by parts: u dv = uv − v du + C Partial Fractions: to integrate a function like ax+b (x+c)(x+d): Write ax+b (x+c)(x+d) = A (x+c) + B (x+d) = A(x+d)+B(x+c) (x+c)(x+d), so ax+b = A(x+d)+B(x+c)=(A+B)x+(Ad+Bc), so a = A+B and b = Ad+Bc; solve for A and B. The approach for more general denomenator can be found in nearly any calculus ...
De nite (Riemann) Integral lim jj !0jj Xn i=1 f(c i) x i = Z b a f(x)dx Partitions of equal width: jj jj= x Partitions of unequal width: jj= max( x i) Continuity )Integrability The Converse is NOT True (see example below) Example: 2 0 bxcdx = 1 Area of a Region in a Plane Area of the region bounded by the graph of f, x-axis, and x = a and x = b ...
Basic integration formulas. (x + c)(x + d) (x + c) (x + d) (x + c)(x + d) so ax + b = A(x + d) + B(x + c) = (A + B)x + (Ad + Bc), so a = A + B and b = Ad + Bc; solve for A and B . The approach for more general denomenator can be found in nearly any calculus textbook.
Sometimes we can rewrite an integral to match it to a standard form. More often however, we will need more advanced techniques for solving integrals. First, let’s look at some examples of our known methods. Basic integration formulas. 1. k dx = kx + C. xn+1. 2. xndx = + C. + 1. 3. dx = ln |x| + C. x. 4. ex dx = ex + C. 5. axdx ax. = + C ln(a)
Basic Integration Formulas. Power functions: xn+1. xn = + C, n 6= −1. + 1. 1. dx = ln |x| + C. x. 2. Trigonometric functions: Z. (3) sin xdx = − cos x + C. Z. (4) cos xdx = sin x + C. Z. (5) sec2xdx = tan x + C. Z. (6) csc2 xdx = − cot x + C. Z. (7) sec x tan xdx = sec x + C. Z. (8) csc x cot x = − csc x + C. 3. Exponential function: Z.