Αποτελέσματα Αναζήτησης
Integral Table from http://integral-table.com. Table of Integrals∗. Basic Forms. xndx 1 = xn+1. + 1. p 2 p. ax + bdx = ( 2b2 + abx + 3a2x2) ax + b (26) 15a2. 1 dx = ln jxj (2) x. px(ax +. = h(2ax + b)pax(ax + b) 4a3=2. p. b2 i ln a x + pa(ax + b) (27) Z. 1. b)dx. udv = uv. vdu. (3) Integrals with Logarithms. Z. ln axdx = x ln ax x. (42)
5.2 The Definite Integral; 5.3 The Fundamental Theorem of Calculus; 5.4 Integration Formulas and the Net Change Theorem; 5.5 Substitution; 5.6 Integrals Involving Exponential and Logarithmic Functions; 5.7 Integrals Resulting in Inverse Trigonometric Functions
Table of Basic Integrals1 (1) Z xn dx = 1 n+1 xn+1; n 6= 1 (2) Z 1 x dx = lnjxj (3) Z u dv = uv Z vdu (4) Z e xdx = e (5) Z ax dx = 1 lna ax (6) Z lnxdx = xlnx x (7) Z sinxdx = cosx (8) Z cosxdx = sinx (9) Z ... CSUN, Integrals, Table of Integrals, Math 280, Math 351, Differential Equations Created Date:
Integrals of Exponential and Logarithmic Functions. ∫ ln x dx = x ln x − x + C. + 1 x. + 1. x ∫ x ln xdx = ln x − + C. 2 + 1 ( n + 1 ) x dx = e x + C ∫.
Table of Basic Integrals. Basic Forms. 1 xndx = xn+1; n 6= 1. + 1. 1 dx. = ln jxj. Z. udv = uv. Z. vdu. (4) Z 1 1 dx = ln jax + bj ax + b a. Integrals of Rational Functions. (5) Z 1 1 dx = (x + a)2 x + a. (6) Z (x + a)n+1. (x + a)ndx = ; n 6= 1. n + 1. (7) Z (x + a)n+1((n + 1)x a) x(x + a)ndx = (n + 1)(n + 2) (8) 1 dx. + x2 = tan 1 x.
21 Δεκ 2020 · For this course, all work must be shown to obtain most of these integral forms. Of the integration formulas listed below, the only ones that can be applied without further work are #1 - 10, 15 - 17, and 49 and 50. And even these will require work to be shown if a substitution is involved.
7 Σεπ 2022 · Basic Integrals. 1. \(\quad \displaystyle ∫u^n\,du=\frac{u^{n+1}}{n+1}+C,\quad n≠−1\) 2. \(\quad \displaystyle ∫\frac{du}{u} =\ln |u|+C\) 3. \(\quad \displaystyle ∫e^u\,du=e^u+C\) 4. \(\quad \displaystyle ∫a^u\,du=\frac{a^u}{\ln a}+C\) 5. \(\quad \displaystyle ∫\sin u\,du=−\cos u+C\) 6. \(\quad \displaystyle ∫\cos u\,du=\sin u+C\)