Αποτελέσματα Αναζήτησης
Integrals with Trigonometric Functions Z sinaxdx= 1 a cosax (63) Z sin2 axdx= x 2 sin2ax 4a (64) Z sinn axdx= 1 a cosax 2F 1 1 2; 1 n 2; 3 2;cos2 ax (65) Z sin3 axdx= 3cosax 4a + cos3ax 12a (66) Z cosaxdx=
Add a constant to the solution. \mathrm {If\:}\frac {dF (x)} {dx}=f (x)\mathrm {\:then\:}\int {f (x)}dx=F (x)+C. Power Rule \int x^ {a}dx=\frac {x^ {a+1}} {a+1},\:\quad \:a\ne -1. Integral Substitution \int f\left (g\left (x\right)\right)\cdot g^'\left (x\right)dx=\int f\left (u\right)du,\:\quad u=g\left (x\right)
Integrals of Trigonometric Functions. ∫ sin x dx = − cos x + C. ∫ cos x dx = sin x + C. ∫ tan x dx = ln sec x + C. ∫ sec x dx = ln tan x + sec x + C. ∫ 1. sin. 2. x dx = ( x − sin x cos x ) + C.
7 Σεπ 2022 · Basic Integrals. 1. \(\quad \displaystyle ∫u^n\,du=\frac{u^{n+1}}{n+1}+C,\quad n≠−1\) 2. \(\quad \displaystyle ∫\frac{du}{u} =\ln |u|+C\) 3. \(\quad \displaystyle ∫e^u\,du=e^u+C\) 4. \(\quad \displaystyle ∫a^u\,du=\frac{a^u}{\ln a}+C\) 5. \(\quad \displaystyle ∫\sin u\,du=−\cos u+C\) 6. \(\quad \displaystyle ∫\cos u\,du=\sin u+C\)
Go into the test knowing the MOST important formulas with this super-condensed 3-page cheat sheet that will give you the edge you need to make the cut! (Get it?)
Title: Calculus_Cheat_Sheet_All Author: ptdaw Created Date: 11/2/2022 7:21:57 AM
5.2 The Definite Integral; 5.3 The Fundamental Theorem of Calculus; 5.4 Integration Formulas and the Net Change Theorem; 5.5 Substitution; 5.6 Integrals Involving Exponential and Logarithmic Functions; 5.7 Integrals Resulting in Inverse Trigonometric Functions