Αποτελέσματα Αναζήτησης
Integrals with Trigonometric Functions Z sinaxdx= 1 a cosax (63) Z sin2 axdx= x 2 sin2ax 4a (64) Z sinn axdx= 1 a cosax 2F 1 1 2; 1 n 2; 3 2;cos2 ax (65) Z sin3 axdx= 3cosax 4a + cos3ax 12a (66) Z cosaxdx=
Integrals of Exponential and Logarithmic Functions. ∫ ln x dx = x ln x − x + C. + 1 x. + 1. x ∫ x ln xdx = ln x − + C. 2 + 1 ( n + 1 ) x dx = e x + C ∫.
7 Σεπ 2022 · Basic Integrals. 1. \(\quad \displaystyle ∫u^n\,du=\frac{u^{n+1}}{n+1}+C,\quad n≠−1\) 2. \(\quad \displaystyle ∫\frac{du}{u} =\ln |u|+C\) 3. \(\quad \displaystyle ∫e^u\,du=e^u+C\) 4. \(\quad \displaystyle ∫a^u\,du=\frac{a^u}{\ln a}+C\) 5. \(\quad \displaystyle ∫\sin u\,du=−\cos u+C\) 6. \(\quad \displaystyle ∫\cos u\,du=\sin u+C\)
5.2 The Definite Integral; 5.3 The Fundamental Theorem of Calculus; 5.4 Integration Formulas and the Net Change Theorem; 5.5 Substitution; 5.6 Integrals Involving Exponential and Logarithmic Functions; 5.7 Integrals Resulting in Inverse Trigonometric Functions
Integral of a constant \int f\left (a\right)dx=x\cdot f\left (a\right) Take the constant out \int a\cdot f\left (x\right)dx=a\cdot \int f\left (x\right)dx. Sum Rule \int f\left (x\right)\pm g\left (x\right)dx=\int f\left (x\right)dx\pm \int g\left (x\right)dx. Add a constant to the solution.
Go into the test knowing the MOST important formulas with this super-condensed 3-page cheat sheet that will give you the edge you need to make the cut! (Get it?)
Integration by parts: u dv = uv − v du + C Partial Fractions: to integrate a function like ax+b (x+c)(x+d): Write ax+b (x+c)(x+d) = A (x+c) + B (x+d) = A(x+d)+B(x+c) (x+c)(x+d), so ax+b = A(x+d)+B(x+c)=(A+B)x+(Ad+Bc), so a = A+B and b = Ad+Bc; solve for A and B. The approach for more general denomenator can be found in nearly any calculus ...