Αποτελέσματα Αναζήτησης
Integrals with Trigonometric Functions Z sinaxdx= 1 a cosax (63) Z sin2 axdx= x 2 sin2ax 4a (64) Z sinn axdx= 1 a cosax 2F 1 1 2; 1 n 2; 3 2;cos2 ax (65) Z sin3 axdx= 3cosax 4a + cos3ax 12a (66) Z cosaxdx=
Integrals of Exponential and Logarithmic Functions. ∫ ln x dx = x ln x − x + C. + 1 x. + 1. x ∫ x ln xdx = ln x − + C. 2 + 1 ( n + 1 ) x dx = e x + C ∫.
Integral Table from http://integral-table.com. Table of Basic Integrals. Basic Forms. 1 xndx = xn+1; n 6= 1. + 1. 1 dx. = ln jxj. Z. udv = uv. Z. vdu. (4) Z 1 1 dx = ln jax + bj ax + b a. Integrals of Rational Functions. (5) Z 1 1 dx = (x + a)2 x + a. (6) Z (x + a)n+1. (x + a)ndx = ; n 6= 1. n + 1. (7) Z (x + a)n+1((n + 1)x a)
Table of Basic Integrals1 (1) Z xn dx = 1 n+1 xn+1; n 6= 1 (2) Z 1 x dx = lnjxj (3) Z u dv = uv Z vdu (4) Z e xdx = e (5) Z ax dx = 1 lna ax (6) Z lnxdx = xlnx x (7) Z sinxdx = cosx (8) Z cosxdx = sinx (9) Z tanxdx = lnjsecxj (10) Z secxdx = lnjsecx+tanxj (11) Z sec2 xdx = tanx (12) Z secxtanxdx = secx (13) Z a a2 +x2 dx = tan 1 x a (14) Z a a2 ...
Table of Integrals. 1. ur+1(x) [u(x)]ru0(x) dx = C, r 6=−1. r. 2. Z u0(x) dx. = ln |u(x)| u(x) 1. C. 3. eu(x)u0(x) dx = eu(x) + C. 4. Z. sin [u(x)] u0(x) dx = − cos u(x) + C. 5. cos [u(x)] u0(x) dx = sin u(x) + C. 6. tan [u(x)] u0(x) dx = ln | sec u(x)| + C. 7. Z. cot [u(x)] u0(x) dx = ln | sin u(x)| + C. 8. Z.
Table of Integrals 1. Z ur du = ur+1 r +1 +C, r 6=−1 2. Z 1 u du =ln|u|+C 3. Z eu du = eu +C 4. Z sinudu= − cosu+C 5. Z cosudu= sinu+C 6. Z tanudu=ln|secu|+C 7. Z cotudu=ln|sinu|+C 8. Z secudu=ln|secu+tanu|+C 9. Z cscudu=ln|cscu−cotu|+C 10. Z secutanudu= secu+C 11. Z cscucotudu= − cscu+C 12. Z sec2 udu= tanu+C 13. Z csc2 udu= − cotu+C ...
Table of Standard Integrals 1. Z xn dx= xn+1 n+1 +C (n6= 1) 2. Z dx x = lnjxj+C 3. Z e xdx= e +C 4. Z sinxdx= cosx+C 5. Z cosxdx= sinx+C 6. Z tanxdx= ln cosx +C 7. Z cotxdx= ln sinx +C 8. Z dx a 2+x = 1 a tan 1 x a +C 9. sec2 xdx= tanx+C 10. Z cosec2 xdx= cotx+C 11. Z secxdx= ln secx+tanx +C 12. Z cosecxdx= ln cosecx cotx