Αποτελέσματα Αναζήτησης
1.1 Review of Functions; 1.2 Basic Classes of Functions; 1.3 Trigonometric Functions; 1.4 Inverse Functions; 1.5 Exponential and Logarithmic Functions
Table of Integrals∗. Basic Forms. xndx 1 = xn+1. + 1. p 2 p. ax + bdx = ( 2b2 + abx + 3a2x2) ax + b (26) 15a2. 1 dx = ln jxj (2) x. px(ax +. = h(2ax + b)pax(ax + b) 4a3=2. p. b2 i ln a x + pa(ax + b) (27) Z. 1. b)dx. udv = uv. vdu. (3) Integrals with Logarithms. Z. ln axdx = x ln ax x. (42) Z ln ax 1. dx = (ln ax)2. (43) x 2 ln(ax +.
7 Σεπ 2022 · Basic Integrals. 1. \(\quad \displaystyle ∫u^n\,du=\frac{u^{n+1}}{n+1}+C,\quad n≠−1\) 2. \(\quad \displaystyle ∫\frac{du}{u} =\ln |u|+C\) 3. \(\quad \displaystyle ∫e^u\,du=e^u+C\) 4. \(\quad \displaystyle ∫a^u\,du=\frac{a^u}{\ln a}+C\) 5. \(\quad \displaystyle ∫\sin u\,du=−\cos u+C\) 6. \(\quad \displaystyle ∫\cos u\,du=\sin u+C\)
21 Δεκ 2020 · For this course, all work must be shown to obtain most of these integral forms. Of the integration formulas listed below, the only ones that can be applied without further work are #1 - 10, 15 - 17, and 49 and 50. And even these will require work to be shown if a substitution is involved.
Integrals of Exponential and Logarithmic Functions. ∫ ln x dx = x ln x − x + C. + 1 x. + 1. x ∫ x ln xdx = ln x − + C. 2 + 1 ( n + 1 ) x dx = e x + C ∫.
5. ∫ audu = au + C ln a. 6. ∫ sin u du =. − cos u + C. 7. ∫ cos u du = sin u + C. 8. ∫ sec2u du = tan u + C. 9. ∫ csc2u du =. − cot u + C. 10. ∫ sec utan u du = sec u + C. 11. ∫ csc ucot u du =.
Integration by parts: u dv = uv − v du + C Partial Fractions: to integrate a function like ax+b (x+c)(x+d): Write ax+b (x+c)(x+d) = A (x+c) + B (x+d) = A(x+d)+B(x+c) (x+c)(x+d), so ax+b = A(x+d)+B(x+c)=(A+B)x+(Ad+Bc), so a = A+B and b = Ad+Bc; solve for A and B. The approach for more general denomenator can be found in nearly any calculus ...