Αποτελέσματα Αναζήτησης
Integrals with Trigonometric Functions Z sinaxdx= 1 a cosax (63) Z sin2 axdx= x 2 sin2ax 4a (64) Z sinn axdx= 1 a cosax 2F 1 1 2; 1 n 2; 3 2;cos2 ax (65) Z sin3 axdx= 3cosax 4a + cos3ax 12a (66) Z cosaxdx=
Integrals of Trigonometric Functions. ∫ sin x dx = − cos x + C. ∫ cos x dx = sin x + C. ∫ tan x dx = ln sec x + C. ∫ sec x dx = ln tan x + sec x + C. ∫ 1. sin. 2. x dx = ( x − sin x cos x ) + C.
Integrals with Trigonometric Functions (71) Z sinaxdx= 1 a cosax (72) Z sin2 axdx= x 2 sin2ax 4a (73) Z sin3 axdx= 3cosax 4a + cos3ax 12a (74) Z sinn axdx= 1 a cosax 2F 1 1 2; 1 n 2; 3 2;cos2 ax (75) Z cosaxdx= 1 a sinax (76) Z cos2 axdx= x 2 + sin2ax 4a (77) Z cos3 axdx= 3sinax 4a + sin3ax 12a 8
Integration by parts: u dv = uv − v du + C Partial Fractions: to integrate a function like ax+b (x+c)(x+d): Write ax+b (x+c)(x+d) = A (x+c) + B (x+d) = A(x+d)+B(x+c) (x+c)(x+d), so ax+b = A(x+d)+B(x+c)=(A+B)x+(Ad+Bc), so a = A+B and b = Ad+Bc; solve for A and B. The approach for more general denomenator can be found in nearly any calculus ...
A Review: The basic integration formulas summarise the forms of indefinite integrals for may of the functions we have studied so far, and the substitution method helps us use the table below to evaluate more complicated functions involving these basic ones.
Table of Integrals. 1. ur+1(x) [u(x)]ru0(x) dx = C, r 6=−1. r. 2. Z u0(x) dx. = ln |u(x)| u(x) 1. C. 3. eu(x)u0(x) dx = eu(x) + C. 4. Z. sin [u(x)] u0(x) dx = − cos u(x) + C. 5. cos [u(x)] u0(x) dx = sin u(x) + C. 6. tan [u(x)] u0(x) dx = ln | sec u(x)| + C. 7. Z. cot [u(x)] u0(x) dx = ln | sin u(x)| + C. 8. Z.
Table of Basic Integrals1 (1) Z xn dx = 1 n+1 xn+1; n 6= 1 (2) Z 1 x dx = lnjxj (3) Z u dv = uv Z vdu (4) Z e xdx = e (5) Z ax dx = 1 lna ax (6) Z lnxdx = xlnx x (7) Z sinxdx = cosx (8) Z cosxdx = sinx (9) Z ... CSUN, Integrals, Table of Integrals, Math 280, Math 351, Differential Equations Created Date: