Αποτελέσματα Αναζήτησης
Integrals with Trigonometric Functions Z sinaxdx= 1 a cosax (63) Z sin2 axdx= x 2 sin2ax 4a (64) Z sinn axdx= 1 a cosax 2F 1 1 2; 1 n 2; 3 2;cos2 ax (65) Z sin3 axdx= 3cosax 4a + cos3ax 12a (66) Z cosaxdx=
Integrals. Basic. Constant Rule. 1.\:\:\int \frac {1} {3}dx. 2.\:\:\int 0.5dx. 3.\:\:\int \frac {20} {16}dx. 4.\:\:\int \frac {1} {2}dx. 5.\:\:\int \frac {3} {4}dx. 6.\:\:\int \frac {1} {4}dx.
Integrals with Trigonometric Functions (71) Z sinaxdx= 1 a cosax (72) Z sin2 axdx= x 2 sin2ax 4a (73) Z sin3 axdx= 3cosax 4a + cos3ax 12a (74) Z sinn axdx= 1 a cosax 2F 1 1 2; 1 n 2; 3 2;cos2 ax (75) Z cosaxdx= 1 a sinax (76) Z cos2 axdx= x 2 + sin2ax 4a (77) Z cos3 axdx= 3sinax 4a + sin3ax 12a 8
Integrals of Exponential and Logarithmic Functions. ∫ ln x dx = x ln x − x + C. + 1 x. + 1. x ∫ x ln xdx = ln x − + C. 2 + 1 ( n + 1 ) x dx = e x + C ∫.
Integrals. Moderate. Tan, Cot, Sec. 1.\:\:\int \sec^ {3} (x)\cos (x)dx. 2.\:\:\int \frac {\sec (x)} {\cos (x)}dx. 3.\:\:\int 1+\tan^ {2} (x)dx. 4.\:\:\int \sin (x+\frac {\pi} {2})dx. 5.\:\:\int \sin (\pi-x)dx. 6.\:\:\int \frac {\cos^ {2} (x)} {\sin^ {2} (x)}
5. ∫ audu = au + C ln a. 6. ∫ sin u du =. − cos u + C. 7. ∫ cos u du = sin u + C. 8. ∫ sec2u du = tan u + C. 9. ∫ csc2u du =. − cot u + C. 10. ∫ sec utan u du = sec u + C. 11. ∫ csc ucot u du =.
A Review: The basic integration formulas summarise the forms of indefinite integrals for may of the functions we have studied so far, and the substitution method helps us use the table below to evaluate more complicated functions involving these basic ones.