Αποτελέσματα Αναζήτησης
Graphing Logarithms Date_____ Period____ Identify the domain and range of each. Then sketch the graph. 1) y = log 6 (x − 1) − 5 x y −8 −6 −4 −2 2 4 6 8 −8 −6 −4 −2 2 4 6 8 Domain: x > 1 Range: All reals 2) y = log 5 (x − 1) + 3 x y −8 −6 −4 −2 2 4 6 8 −8 −6 −4 −2 2 4 6 8 Domain: x > 1 Range: All reals 3) y ...
Given that log 2 = x, log 3 = y and log 7 = z, express the following expressions in terms of x, y, and z. (1) log 12 (2) log 200. 14. (3) log (4) log 0:3. 3. (5) log 1:5 (6) log 10:5 6000. (7) log 15 (8) log. 7.
Worksheet by Kuta Software LLC Kuta Software - Infinite Precalculus Graphing Logarithms Name_____ Date_____ Period____-1-Sketch the graph of each function. 1) y log (x ) x y 2) y log (x ) x y
Graphing Logarithmic Functions. Date________________ Block____. Identify the domain and range of each. Then sketch the graph. 1) y = log (x + 5) + 2. 3. 8.
6 Ιαν 2017 · Practice Worksheet: Graphing Logarithmic Functions. Without a calculator, match each function with its graph. _____1. _____2. _____4. _____5. B. D. E. _____3. _____6. C. F. . Graph without a calculator. Label the two anchor points and dash in the asymptote.
logarithmic functions & their graphs Directions: Using the parent graph of 𝑓(𝑥)=log 4 𝑥, describe the transformations of each function. 1.) )𝑓 (𝑥=2log 4 (𝑥−1)+3 2.) 𝑓(𝑥)=log 4 (2𝑥−4)−2 (3.) 𝑓𝑥)=log 4 −3𝑥−15)−2
Describe the behavior of the given function as x approaches −3 and as x approaches positive infinity. 23 Graph y = f(x), where f(x) = log 2(x − 1) + 3 on the set of axes below. State the equation of the asymptote of f(x). When f(x) is reflected over the line y = x, a new function is formed: g(x) = 2x− 3 + 1.