Αποτελέσματα Αναζήτησης
neocomputer.org ©2020 David Richardson – Free for any use Trigonometric Table for angles from 0° to 360° Deg Rad sin cos tan cot sec cosec
tan(𝑥)) cot( )=cos(𝑥) sin(𝑥) sec( )= 1 cos(𝑥) csc( = 1 sin(𝑥) Pythagorean Identities (cos 2 )+sin( )=1 2sec( )−tan2( )=1 2csc( )−cot2( )=1 Double Angle Identities (sin2 )=2sin( )cos( ) (cos2 )=1−2sin2( ) (cos2 )=2cos2( )−1 cos(2 )=cos2( )−sin2( ) tan(2 )=2tan(𝑥) 1−tan2(𝑥) Sum Difference Identities
secθ θ ≠ ⎛ 1 ⎞ , ⎜ ⎝ n + ⎟ π , n = 0, ± 1, ± 2, ... θ cotθ , ≠ n π , n = 0, ± 1, ± 2, ... f ( θ ) . So, if ω is a fixed number and θ. is any angle we have the following periods. The range is all possible values to get out of the function. is equivalent to x = cos y. is equivalent to x = tan y 90°. − 1 ≤ x ≤ 1 ≤ y ≤.
Table of Trigonometric Functions – Exact Values for Special Angles Angle θ Values of the trigonometric functions in degrees in radians sin(θ) cos(θ) tan(θ) cot(θ) sec(θ) csc(θ)
sin Reciprocal Identities sin = 1 csc cos = 1 sec tan = 1 cot Co-function Identities sin = cos 2 cos = sin 2 tan = cot 2 csc = sec 2 sec = csc 2 cot = tan 2 Phytagorean Identities sin2 cos2 = 1 1 tan2 = sec2 1 cot2 = csc2 Double Angle Identities sin 2 = 2 sin cos cos 2 = cos2 sin2 cos 2 = 2 cos2 1 cos 2 = 1 2 sin2 tan 2 = 2 tan 1 tan2 Negative ...
The unit circle chart also involves sin, cos, tan, sec, csc, cot. Fortunately, you don’t have to memorize everything involved in the entire unit circle. All you need to do is apply the basic concepts you know about the circle and about right triangles.
sin cos tan sec csc yx rr yx cot x y rr x y θθ θθ θθ = = = = = = sin cos tan cot cos sin 11 sec csc cos sin x x xx x x xx x x == == Reduction Formulas Sum and Difference Formulas Pythagorean Identities sin( ) sin( ) cos( ) cos( ) tan( ) tan( ) cot( ) cot( ) sec( ) sec( ) csc( ) csc( ) x xxx x xxx x xx −=− −= −=− −=− −= − ...