Αποτελέσματα Αναζήτησης
tan(𝑥)) cot( )=cos(𝑥) sin(𝑥) sec( )= 1 cos(𝑥) csc( = 1 sin(𝑥) Pythagorean Identities (cos 2 )+sin( )=1 2sec( )−tan2( )=1 2csc( )−cot2( )=1 Double Angle Identities (sin2 )=2sin( )cos( ) (cos2 )=1−2sin2( ) (cos2 )=2cos2( )−1 cos(2 )=cos2( )−sin2( ) tan(2 )=2tan(𝑥) 1−tan2(𝑥) Sum Difference Identities
neocomputer.org ©2020 David Richardson – Free for any use Trigonometric Table for angles from 0° to 360° Deg Rad sin cos tan cot sec cosec
The Unit Circle Table Of Values Function → Degree ↓ cos sin tan sec csc cot 0° 1 0 0 1 undefined undefined 30 ° 2 3 2 1 3 3 3 2 3 2 3 45 ° 2 2 2 2 1 2 2 1 60 ...
Table of Trigonometric Functions – Exact Values for Special Angles Angle θ Values of the trigonometric functions in degrees in radians sin(θ) cos(θ) tan(θ) cot(θ) sec(θ) csc(θ)
For this definition θ is any angle. The domain is all the values of θ that can be plugged into the function. 1 tanθ , ⎛ θ ≠ ⎜ n + ⎞ ⎟ π , n = 0, ± 1, ± 2, ... ⎝ 2 ⎠ cscθ , θ ≠ n π = ± ± , n 0, 1, 2, ... secθ θ ≠ ⎛ 1 ⎞ , ⎜ ⎝ n + ⎟ π , n = 0, ± 1, ± 2, ... θ cotθ , ≠ n π , n = 0, ± 1, ± 2, ... f ( θ ) . So, if ω is a fixed number and θ.
sin Reciprocal Identities sin = 1 csc cos = 1 sec tan = 1 cot Co-function Identities sin = cos 2 cos = sin 2 tan = cot 2 csc = sec 2 sec = csc 2 cot = tan 2 Phytagorean Identities sin2 cos2 = 1 1 tan2 = sec2 1 cot2 = csc2 Double Angle Identities sin 2 = 2 sin cos cos 2 = cos2 sin2 cos 2 = 2 cos2 1 cos 2 = 1 2 sin2 tan 2 = 2 tan 1 tan2 Negative ...
sin𝜃𝜃= 𝑦𝑦 csc 𝜃𝜃= 𝑟𝑟 𝑦𝑦 𝜃𝜃= 𝑥𝑥 𝑟𝑟 sec 𝑟𝑟 𝑥𝑥 tan 𝜃𝜃= 𝑥𝑥 cot 𝜃𝜃= 𝑥𝑥 𝑦𝑦