Αποτελέσματα Αναζήτησης
15 Απρ 2017 · The structural, mechanical and thermodynamic properties of ZrO 2 polymorphs (namely, monoclinic (P 2 1/c), tetragonal (P 4 2/nmc), cubic (F m 3 ¯ m), and orthorhombic (Pbca and Pnma)) are investigated systematically by employing DFT functionals (LDA, PBE and PW91).
- Structures, Phase Transition, Elastic Properties of SnO2 From First-Principles Analysis
An estimate of the zero-temperature transition pressure...
- First-principles Study of Structural, Optical and Elastic Properties of Cubic HfO2
The total and the partial density of states of cubic HfO 2...
- In Vitro Performance of Zirconia and Titanium Implant/Abutment Systems for Anterior Application
Methods. Eight groups of implant–abutment combinations (n =...
- Phase Transitions and Elasticity in Zirconia
It has been demonstrated recently that very accurate ground...
- Theoretical Calculations of Thermodynamic Properties of Tetragonal ZrO2
The thermodynamic properties of tetragonal-ZrO 2 (t-ZrO 2)...
- The Detailed Orbital-Decomposed Electronic Structures of Tetragonal ZrO2
The optimized crystal structure of the tetragonal ZrO 2 is...
- In Fluorite Phase
The ground state properties of ZrO 2, HfO 2 and ThO 2 are...
- A DFT Study
The electronic, elastic constants and optical properties of...
- Structures, Phase Transition, Elastic Properties of SnO2 From First-Principles Analysis
ZrO2 is Baddeleyite structured and crystallizes in the monoclinic P2_1/c space group. The structure is three-dimensional. Zr4+ is bonded to seven O2- atoms to form a mixture of distorted corner and edge-sharing ZrO7 pentagonal bipyramids.
15 Οκτ 2023 · Synthesis, structural, mechanical, and biological properties of HAp-ZrO2-hBN biocomposites for bone regeneration applications
22 Ιουν 2018 · Addition of zirconia (ZrO2) to nuclear waste glasses, even in small amount, significantly affects physical properties such as chemical durability, density, viscosity, and glass transition...
9 Μαρ 2022 · Our findings provide insight into the thermodynamically forbidden region of the antiferroelectric transition in ZrO2 and extend the concept of negative capacitance beyond ferroelectricity.
17 Μαΐ 2024 · Zirconia (ZrO 2) stands out as a crucial oxide material, owing to its distinctive physical and chemical properties characterized by ideal mechanical and chemical stability, outstanding thermal resilience, low thermal expansion coefficient, significant ionic conductivity, and a high refractive index.
ZrO2 crystallizes in the tetragonal P4_2/nmc space group. The structure is three-dimensional. Zr4+ is bonded in a distorted body-centered cubic geometry to eight equivalent O2- atoms. There are four shorter (2.09 Å) and four longer (2.44 Å) Zr–O bond lengths.